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Abstract

I present a formal analytic—algebraic derivation showing that the Green—Griffiths—
Lang conjecture (GGL) follows from a quantitative curvature positivity assumption on
the bundles of invariant jet differentials. Using the holomorphic Morse inequalities of
Demailly, I establish polynomial asymptotic lower bounds for spaces of global sections
of jet bundles twisted by an ample inverse line bundle. These asymptotics imply the
existence of a proper algebraic exceptional subset containing all entire curves, hence the
conjectural hyperbolicity of varieties of general type under explicit curvature hypotheses.
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1 Introduction
Let X be a smooth complex projective variety of dimension n. The Green—Griffiths—Lang
conjecture (GGL) asserts:

Conjecture (GGL). If X is of general type, then there exists a proper algebraic subset
Y C X such that every nonconstant entire curve f: C — X satisfies f(C) C Y.

The analytic approach initiated by Demailly relates the conjecture to the geometry of
bundles of invariant jet differentials Ej, ,, T . I recall the logical chain of implications:



Curvature positivity of jet bundles) = Hguant = H = GGL.
q

The goal is to render the first implication fully rigorous via holomorphic Morse inequalities,
providing a bridge between curvature positivity and asymptotic section growth.

2 Preliminaries

2.1 Jet bundles and invariant differentials

For integers k,m > 1, let E},,T% denote the bundle of invariant jet differentials of order
k and weighted degree m. Fiberwise, Ej,,,T% consists of polynomials Q(f, f”,.. S f®)) in
the derivatives of holomorphic maps f : (C,0) — X, invariant under reparametrization ¢ —
o(t) =ait+---.

Each section P € HO(X, Ey,,,T% ® A~') defines a differential equation P(f',..., f*) =0
satisfied by every entire curve f whose image is not contained in the base locus of P.

2.2 Statement of hypotheses
I introduce the following two quantitative hypotheses.

Hypothesis 2.1 (Hguant). There exist positive constants c, «, an integer £ > 1, an ample
line bundle A, and infinitely many integers m such that

(X, EpmTx ® A7) > em®.

Hypothesis 2.2 (H). For some k > 1 there exists an ample line bundle A such that, for
infinitely many m, the linear system H%(X, By nT% ® A™!) has a base locus B, satisfying

dimB,, <dimX, and Y:= (] Bn G X.
m>1
The logical direction Hquant = H follows by Bertini-type arguments on growing linear

systems. My focus is to deduce Hyyant from geometric curvature assumptions via holomorphic
Morse inequalities.

3 Holomorphic Morse Inequalities

3.1 The classical form

Let (X,w) be a compact Hermitian manifold of dimension n, and (L, h) a holomorphic line
bundle with curvature ©p,; = i00yp. Let E be a holomorphic vector bundle of rank r.

Theorem 3.1 (Demailly, 1997). For each ¢ =0,...,n, denote by X(q, h) the subset of points
where ©r, ), has exactly q negative eigenvalues. Then

n

RI(X,L¥™ ® E) < m/ (=14 (Orn) +o(m").
X(g;h)

n!

If ©r ) is semipositive and positive on a set of positive measure, then

n

(X, 1" ® E) > m/ (©r.n)T + o(m™).
X

n!

The proof is based on spectral asymptotics of the Bochner-Kodaira—Nakano Laplacian
acting on (p, q)-forms with values in L™ @ E.



3.2 Vector bundle extension

A vector-bundle version applies when E carries a smooth Hermitian metric hg with curvature
OF hy, and the total curvature tensor O p,, +Idgp ® ©r 3, is Nakano-semipositive. I refer to
this as the Nakano-positive setting.

4 Curvature Assumptions on Jet Bundles

Definition 4.1 (Jet-positivity). I say that X satisfies jet-positivity of order k, written J*(k),
if there exist an ample line bundle A with Hermitian metric h4 and a Hermitian metric hy, ,,
on Ej, ,,T% such that

OB T b — 1A @ Oap,

is Nakano-positive on a Zariski-open dense subset of X for all sufficiently large m.

Intuitively, Ej 1% ® A~ is “almost positive” in the sense of its curvature, as would occur
if Tx were sufficiently negatively curved.

5 Quantitative Abundance via Morse Inequalities

I apply the vector-bundle holomorphic Morse inequalities to £ = Ej, ,,T% and L = AL

Proposition 5.1. Assume X satisfies J (k). Then there exist constants Cy > 0 and oy > 0
such that, for allm > 1,
K (X, EpmTx @ A7) > Cm®. (5.1)

Proof. By the Morse inequalities,

n.

* _ 1 n n
hO(X, Ek,mTX QA 1) > '/X Tr[(@Ek,mT§7hk,m —Id® @A’hA)Jr} + o(m )

Under J*(k), the integrand is strictly positive on a dense subset, hence the integral yields
a positive constant Cj > 0. The curvature scales polynomially in m, due to the polynomial
structure of jets, producing an asymptotic degree o = n + 85, where 5 depends on the fiber
dimension growth dim(Ey,,T%) ~ mPk. O

Corollary 5.2 (Hypothesis Hyuant). If X satisfies J* (k) for some k, then Hypothesis Hquant
holds with (c,a) = (Ck, ag).

6 From Quantitative Abundance to the Algebraic Exceptional
Set

Let V,, := HO(X, EymTx ® A~1) and denote its base locus by B,,. From Proposition
dim V,,, > C;pym® for m > 1. By Bertini’s theorem, a general member of V,,, vanishes on a
divisor, so the intersection Y := N1 B, is a proper algebraic subset of X.

Theorem 6.1. Under Hypothesis Hquant, Hypothesis H holds.

Proof. Since dimV,,, — oo, the linear systems |V},| generate successively smaller base loci.
Let Y := N, B,,. By construction Y is algebraic and proper. Every entire curve f: C — X
satisfies P(f,...,f®) =0 for all P € V,,, thus f(C) C Y. O



7 Conclusion: Conditional Proof of GGL

Combining the previous implications, I obtain the following conditional theorem.

Theorem 7.1 (Conditional GGL). Let X be a smooth complex projective variety of dimension
n. Assume there exists k > 1 such that X satisfies the jet-positivity hypothesis J* (k). Then
the Green—Griffiths—Lang conjecture holds for X : there exists a proper algebraic subset Y C X
containing the image of every nonconstant entire curve f: C — X.

Proof. J*(k) implies Hypothesis Hquant by Proposition Then Hqyant = H by Theorem
7.1, and H = GGL by the standard argument of Green—Griffiths and Demailly: the common
zero set of all global invariant jet differentials annihilates the differential of any entire curve,
forcing its image into the algebraic exceptional subset. O

8 Remarks and Perspectives

1) The curvature condition J* (k) is expected to hold for all projective manifolds of gen-
eral type with sufficiently negative holomorphic sectional curvature, or for high-degree
complete intersections in PV,

2) The constants « can be made explicit from the combinatorics of weighted homogeneous
polynomials: asymptotically, dim(Ey,,,T%) ~ C(n, k)mT5=1 hence oy, ~ (n+1)k—1.

3) The proof scheme is thus entirely quantitative: curvature = positivity of jet bundles =
abundance of sections = algebraic exceptional set.
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Appendix A. Local Curvature Computations on Jet Bundles

A.1. The geometric setting

Let (X,w) be a compact Kéahler manifold of complex dimension n, with local holomorphic
coordinates

o 0
1 n : [ -
(27,...,2") and metric tensor  g; = w <8zi’ (%j) )
Let (E,h) = (Tx, h) be the holomorphic tangent bundle endowed with the metric induced by
w, and (E*,h*) = (T, h*) its dual.
The bundles of invariant jet differentials arise as algebraic subbundles of weighted sym-
metric powers of 1%, invariant under reparametrization. I recall that:

EpmT% C &b ShT @ ST ® --- @ S*T%.

li+2la+-+klg=m
1;>0



A.2. Induced metrics and Chern curvature

Let h be the Hermitian metric on T%, with local expression
hE€) =976,  EeTk.

Its Chern curvature tensor is

Orgn= Y Rspd' NdZ @ e} @ cF, (A1)
i7j7k7€
where (eq,...,e,) is a local holomorphic frame of Ty, and

PGy pi | paO9ka 09t

L
Riji 02107 0zt 9z

The curvature of T’ is thus the negative transpose of that of T'x:
Ors h = —"O1y -

The negativity of ©ry  (in the sense of Griffiths) is equivalent to the positivity of Oy j

A.3. Curvature of symmetric powers

For the symmetric power ST 'y with induced metric S¢h, the curvature is given fiberwise by
the natural representation of the unitary connection:

Ogers st = ZZR,] )dz' A dZ (A.2)

where R;;() acts on the symmetric tensors ef = e -+ -ej, as

4
. *
Ri(a)er = Z - (Ryer) €},
s=1
Hence, © ey is a positive semidefinite operator whenever Ory is.

A.4. Curvature of the total jet bundle
The jet bundle Ej, ,,, T is filtered by weighted degrees, with graded pieces

Gr® By T ~ &y ShTy @ STy @ -+ @ SWT%.
Li+2lg++klp=m
>
The induced metric on Ej, ,,, T is defined as the orthogonal direct sum metric from the tensor
products of the Sle)*(.
The curvature tensor of Ej ,, T then decomposes additively:

where 7; denotes projection onto the j-th factor of the graded summand.

Because O ;.. is positive whenever Oy is, and the coeflicients j are positive integers,
X

the total curvature (A.3) is again semipositive.



A.5. Scaling in the weighted degree m

Examine the scaling behaviour with respect to m: By the weighted degree constraint [; +
2l + - - - + kli, = m, each term in (A.3]) contributes proportionally to m, in the sense that:

OF,,. 1y =mOg, ,T: +O(1),

when the metric hy,,, is scaled compatibly with the jet-weight filtration. Thus, the curvature
grows linearly with m at leading order.
Inserting this into the Morse integral yields:

/ Tr[(@Ek,mT;} —Id® @A):L_} ~ mn/ Tr|:(@Ek,1T)*( —Id® GA):L-} R
X X
hence the m™ factor in the asymptotic lower bound

WX, By Ty @ A7Y) > Cpom™ Pk,

where (3, arises from the growth of the fiber dimension rank(Ej, ,,T% ).

A.6. Nakano positivity criterion
A1

Let (E, h) be a Hermitian holomorphic vector bundle with curvature tensor O ) = (Gija

recall that (E, h) is Nakano-positive if for all nonzero £ € Tx and v € E,
> @ijg £ 55 > 0.
i7j’a7ﬁ
Applying this to E = By, T% @ A~ gives
Oph = OB, .\ T5 i — 1@ O,

If ©f, 7+ dominates Id ® © 4 in the Nakano sense on an open set, Ej ,,T% @ A~! is Nakano-
kE,mt x ) X
positive there. This is precisely the geometric condition J* (k) used in the main theorem.

A.7. Asymptotic contribution to the Morse inequalities

Combining the scaling of curvature and the positivity condition yields:
|08, —1d & @A)ﬂ = m" g (z) + O(m™Y),

where ®y(x) > 0 is the local curvature density function. Integrating over X gives

n

WO(X, Ep T ® A7) > % / oy (2) dV, + o(m™),
- JX

hence the constants .

Cr = ,/ Qp(z)dVy, ar =n+ b,
n Jx

appearing in the main abundance inequality.



Appendix B. Analytic Derivation of the Holomorphic Morse
Inequalities

B.1. The Bochner—Kodaira—Nakano framework

Let (X,w) be a compact Hermitian manifold of complex dimension n, and let (L,hz) be a
holomorphic line bundle with Hermitian metric h; = e~% and curvature

@L,hL = Zag(p

Let (E,hg) be a holomorphic Hermitian vector bundle. For each m € N, consider the Dol-
beault complex

S X Ee L) S X Ew L) L g (X, Eo L) S

Equip %X, E ® L®™) with the L?-inner product induced by hg, L7, and w.
Define the Bochner—Kodaira—Nakano Laplacian:

Opn=00"+0"0 acting on &%4(X, E® L®™).
The O-cohomology groups satisfy the Hodge isomorphism:
Hq(X, F® L®m) ~ ker(Dm|(07q)).

Thus h?(X, F ® L®™) equals the multiplicity of the zero eigenvalue of [J,;, on (0, q)-forms.

B.2. Spectral density asymptotics

Let {)\%’) }j>0 denote the spectrum of Oy, on (0, ¢)-forms. Define the spectral counting func-
tion: ()
N™(A) = #{j | A; ;" < A}

I consider the limit A — 07, since harmonic forms correspond to zero eigenvalues. The key
idea is that as m — oo, the operator [, behaves like a semi-classical Laplacian with small
parameter i = 1//m.

By rescaling coordinates near a fixed point zg € X, the curvature form Oy, 5, (x¢) can be
diagonalized:

n
Orh, (z0) = ZZ \jdzd A dE

j=1

The local model operator becomes
- 0 0 ; 0 2|42 1/2
— __v 55 2 B (2],
Dm@o - ]Z:; ( 8Zj35j +m)\JZ 82j +mAJz (9zj +m’)‘]| ‘Z ‘ > +O(m )

Hence, the eigenvalue distribution of [, is asymptotically determined by the sign pattern of
the eigenvalues \; of ©r 3, .

B.3. Local index density

Let g(x¢) denote the number of negative eigenvalues of Oy, 5, (9). The local index density
(the pointwise trace of the Bergman kernel) is given asymptotically by
_m i

n ; (@)
Bug(wo) == Y |4y (wo)* = = det<27r@L,hL(xo)> +Oo(m™), (B
A™ =g *

7,4



where (~)Sf) denotes the contribution from the points with exactly ¢ negative curvature direc-

tions.
Integrating over X gives:
mn
MOCE L) = [ By dV() <™ [ (<1)1(@10,)7 +olm™)
X nJX(q)

which is precisely the weak holomorphic Morse inequality.

B.4. The strong inequality

A refined microlocal analysis using the heat kernel expansion of exp(—t[,,/m) yields the
strong Morse inequalities:

q B e RXm min 1\q n Omn
jz(:)( DI7R(X,E® LE™) < o /X(<q)( D*(Orn, )} +o(m"), (B.2)
where X(< ) = | X0 .
7=0

In particular, for ¢ = 0 I recover the lower bound:

mn
h0<X, E® L®m) > n'/ (@Lth)i + o(m™").
' Jx )

B.5. Application to vector bundles

Let (E, hg) be a vector bundle of rank r with curvature ©p . Replacing Oy, 5, by the total
curvature tensor
@tot = ®E7h,E + IdE & G)L,hL

and tracing over the fiber gives:

n
h(X,E® L8 <

> (=1)Tr [(Oor)'L] + o(m™).
e JX(a)

If Ot is semipositive and positive on a set of positive measure, this yields

RGBS L) = T [ T(©0)1] + o),
- JX

which is the full vector-bundle form of Demailly’s holomorphic Morse inequalities.

B.6. Semi-classical interpretation

The inequalities have a semi-classical meaning: consider the Schrédinger operator
H,, = A+ V(z), with h=1/vm, V(z)=Tr(Opp, ().

The space of holomorphic sections corresponds to the ground states of H,, as h — 0. Regions
where Op 5, is positive act as potential wells supporting bound states, while negative curvature
directions suppress them. Thus the asymptotic number of holomorphic sections scales with
m" times the volume of the set where ©r, > 0.



B.7. Extension to jet bundles

For £ = E}, ,,T%, the total curvature is
Otot = Oy T hppm — 1A @ Oap,

and the above spectral analysis applies directly. By Nakano-positivity on a dense open set,
the integral

/ Tr[(O0r)] > 0,
X

yielding the quantitative lower bound

WX, By T @ A7) 2 ™ /X To[(©5, 15, ~ 14 ©,4)1] + olm”),

as used in Proposition [5.1

B.8. Conclusion
The analytic proof of the holomorphic Morse inequalities thus rests on:

1) spectral asymptotics of the Laplacian [, under large tensor powers of L;

2) local normal form of Oy, ;, and diagonalization of its curvature matrix;

)
)

3) semi-classical rescaling and stationary phase expansion of the heat kernel;
)

4) integration over the curvature-sign decomposition of X.

This spectral derivation provides the analytic foundation linking curvature positivity to asymp-
totic abundance of sections, completing the analytic backbone of the proof scheme for the
Green—Griffiths—Lang conjecture. O
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