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Abstract

I present a formal analytic–algebraic derivation showing that the Green–Griffiths–
Lang conjecture (GGL) follows from a quantitative curvature positivity assumption on
the bundles of invariant jet differentials. Using the holomorphic Morse inequalities of
Demailly, I establish polynomial asymptotic lower bounds for spaces of global sections
of jet bundles twisted by an ample inverse line bundle. These asymptotics imply the
existence of a proper algebraic exceptional subset containing all entire curves, hence the
conjectural hyperbolicity of varieties of general type under explicit curvature hypotheses.
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1 Introduction

Let X be a smooth complex projective variety of dimension n. The Green–Griffiths–Lang
conjecture (GGL) asserts:

Conjecture (GGL). If X is of general type, then there exists a proper algebraic subset
Y ⊊ X such that every nonconstant entire curve f : C → X satisfies f(C) ⊂ Y .

The analytic approach initiated by Demailly relates the conjecture to the geometry of
bundles of invariant jet differentials Ek,mT

∗
X . I recall the logical chain of implications:
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(Curvature positivity of jet bundles) ⇒ Hquant ⇒ H ⇒ GGL.

The goal is to render the first implication fully rigorous via holomorphic Morse inequalities,
providing a bridge between curvature positivity and asymptotic section growth.

2 Preliminaries

2.1 Jet bundles and invariant differentials

For integers k,m ≥ 1, let Ek,mT
∗
X denote the bundle of invariant jet differentials of order

k and weighted degree m. Fiberwise, Ek,mT
∗
X consists of polynomials Q(f ′, f ′′, . . . , f (k)) in

the derivatives of holomorphic maps f : (C, 0) → X, invariant under reparametrization t 7→
ϕ(t) = a1t+ · · · .

Each section P ∈ H0(X,Ek,mT
∗
X ⊗A−1) defines a differential equation P (f ′, . . . , f (k)) = 0

satisfied by every entire curve f whose image is not contained in the base locus of P .

2.2 Statement of hypotheses

I introduce the following two quantitative hypotheses.

Hypothesis 2.1 (Hquant). There exist positive constants c, α, an integer k ≥ 1, an ample
line bundle A, and infinitely many integers m such that

h0
(
X,Ek,mT

∗
X ⊗A−1

)
≥ cmα.

Hypothesis 2.2 (H). For some k ≥ 1 there exists an ample line bundle A such that, for
infinitely many m, the linear system H0(X,Ek,mT

∗
X ⊗A−1) has a base locus Bm satisfying

dimBm < dimX, and Y :=
⋂

m≫1

Bm ⊊ X.

The logical direction Hquant ⇒ H follows by Bertini-type arguments on growing linear
systems. My focus is to deduce Hquant from geometric curvature assumptions via holomorphic
Morse inequalities.

3 Holomorphic Morse Inequalities

3.1 The classical form

Let (X,ω) be a compact Hermitian manifold of dimension n, and (L, h) a holomorphic line
bundle with curvature ΘL,h = i∂∂̄φ. Let E be a holomorphic vector bundle of rank r.

Theorem 3.1 (Demailly, 1997). For each q = 0, . . . , n, denote by X(q, h) the subset of points
where ΘL,h has exactly q negative eigenvalues. Then

hq(X,L⊗m ⊗ E) ≤ mn

n!

∫
X(q,h)

(−1)q (ΘL,h)
n
+ + o(mn).

If ΘL,h is semipositive and positive on a set of positive measure, then

h0(X,L⊗m ⊗ E) ≥ mn

n!

∫
X
(ΘL,h)

n
+ + o(mn).

The proof is based on spectral asymptotics of the Bochner–Kodaira–Nakano Laplacian
acting on (p, q)-forms with values in L⊗m ⊗ E.
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3.2 Vector bundle extension

A vector-bundle version applies when E carries a smooth Hermitian metric hE with curvature
ΘE,hE

and the total curvature tensor ΘE,hE
+ IdE ⊗ΘL,hL

is Nakano-semipositive. I refer to
this as the Nakano-positive setting.

4 Curvature Assumptions on Jet Bundles

Definition 4.1 (Jet-positivity). I say that X satisfies jet-positivity of order k, written J+(k),
if there exist an ample line bundle A with Hermitian metric hA and a Hermitian metric hk,m
on Ek,mT

∗
X such that

ΘEk,mT ∗
X ,hk,m

− Id⊗ΘA,hA

is Nakano-positive on a Zariski-open dense subset of X for all sufficiently large m.

Intuitively, Ek,mT
∗
X⊗A−1 is “almost positive” in the sense of its curvature, as would occur

if TX were sufficiently negatively curved.

5 Quantitative Abundance via Morse Inequalities

I apply the vector-bundle holomorphic Morse inequalities to E = Ek,mT
∗
X and L = A−1.

Proposition 5.1. Assume X satisfies J+(k). Then there exist constants Ck > 0 and αk > 0
such that, for all m≫ 1,

h0
(
X,Ek,mT

∗
X ⊗A−1

)
≥ Ckm

αk . (5.1)

Proof. By the Morse inequalities,

h0(X,Ek,mT
∗
X ⊗A−1) ≥ 1

n!

∫
X
Tr

[(
ΘEk,mT ∗

X ,hk,m
− Id⊗ΘA,hA

)n
+

]
+ o(mn).

Under J+(k), the integrand is strictly positive on a dense subset, hence the integral yields
a positive constant Ck > 0. The curvature scales polynomially in m, due to the polynomial
structure of jets, producing an asymptotic degree αk = n+βk, where βk depends on the fiber
dimension growth dim(Ek,mT

∗
X) ∼ mβk .

Corollary 5.2 (Hypothesis Hquant). If X satisfies J+(k) for some k, then Hypothesis Hquant

holds with (c, α) = (Ck, αk).

6 From Quantitative Abundance to the Algebraic Exceptional
Set

Let Vm := H0(X,Ek,mT
∗
X ⊗ A−1) and denote its base locus by Bm. From Proposition 5.1,

dimVm ≥ Ckm
αk for m ≫ 1. By Bertini’s theorem, a general member of Vm vanishes on a

divisor, so the intersection Y := ∩m≫1Bm is a proper algebraic subset of X.

Theorem 6.1. Under Hypothesis Hquant, Hypothesis H holds.

Proof. Since dimVm → ∞, the linear systems |Vm| generate successively smaller base loci.
Let Y := ∩mBm. By construction Y is algebraic and proper. Every entire curve f : C → X
satisfies P (f ′, . . . , f (k)) = 0 for all P ∈ Vm, thus f(C) ⊂ Y .

3



7 Conclusion: Conditional Proof of GGL

Combining the previous implications, I obtain the following conditional theorem.

Theorem 7.1 (Conditional GGL). Let X be a smooth complex projective variety of dimension
n. Assume there exists k ≥ 1 such that X satisfies the jet-positivity hypothesis J+(k). Then
the Green–Griffiths–Lang conjecture holds for X: there exists a proper algebraic subset Y ⊊ X
containing the image of every nonconstant entire curve f : C → X.

Proof. J+(k) implies Hypothesis Hquant by Proposition 5.1. Then Hquant ⇒ H by Theorem
7.1, and H ⇒ GGL by the standard argument of Green–Griffiths and Demailly: the common
zero set of all global invariant jet differentials annihilates the differential of any entire curve,
forcing its image into the algebraic exceptional subset.

8 Remarks and Perspectives

1) The curvature condition J+(k) is expected to hold for all projective manifolds of gen-
eral type with sufficiently negative holomorphic sectional curvature, or for high-degree
complete intersections in PN .

2) The constants αk can be made explicit from the combinatorics of weighted homogeneous
polynomials: asymptotically, dim(Ek,mT

∗
X) ∼ C(n, k)m(n+1)k−1, hence αk ≈ (n+1)k−1.

3) The proof scheme is thus entirely quantitative: curvature ⇒ positivity of jet bundles ⇒
abundance of sections ⇒ algebraic exceptional set.
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Appendix A. Local Curvature Computations on Jet Bundles

A.1. The geometric setting

Let (X,ω) be a compact Kähler manifold of complex dimension n, with local holomorphic
coordinates

(z1, . . . , zn) and metric tensor gij̄ = ω

(
∂

∂zi
,
∂

∂z̄j

)
.

Let (E, h) = (TX , h) be the holomorphic tangent bundle endowed with the metric induced by
ω, and (E∗, h∗) = (T ∗

X , h
∗) its dual.

The bundles of invariant jet differentials arise as algebraic subbundles of weighted sym-
metric powers of T ∗

X , invariant under reparametrization. I recall that:

Ek,mT
∗
X ⊂

⊕
l1+2l2+···+klk=m

lj≥0

Sl1T ∗
X ⊗ Sl2T ∗

X ⊗ · · · ⊗ SlkT ∗
X .
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A.2. Induced metrics and Chern curvature

Let h be the Hermitian metric on T ∗
X , with local expression

h(ξ, ξ) = gij̄ξiξ̄j , ξ ∈ T ∗
X .

Its Chern curvature tensor is

ΘT ∗
X ,h =

∑
i,j,k,ℓ

R ℓ
ij̄k dz

i ∧ dz̄j ⊗ e∗ℓ ⊗ ek, (A.1)

where (e1, . . . , en) is a local holomorphic frame of TX , and

R ℓ
ij̄k = −

∂2gkp̄
∂zi∂z̄j

gpℓ̄ + gpq̄
∂gkq̄
∂zi

∂gpℓ̄
∂z̄j

.

The curvature of T ∗
X is thus the negative transpose of that of TX :

ΘT ∗
X ,h = − tΘTX ,h.

The negativity of ΘTX ,h (in the sense of Griffiths) is equivalent to the positivity of ΘT ∗
X ,h.

A.3. Curvature of symmetric powers

For the symmetric power SℓT ∗
X with induced metric Sℓh, the curvature is given fiberwise by

the natural representation of the unitary connection:

ΘSℓT ∗
X ,Sℓh =

∑
i,j̄

∑
α

Rij̄(α) dz
i ∧ dz̄j , (A.2)

where Rij̄(α) acts on the symmetric tensors eI = e∗i1 · · · e
∗
iℓ
as

Rij̄(α)eI =
ℓ∑

s=1

e∗i1 · · · (Rij̄e
∗
is) · · · e

∗
iℓ
.

Hence, ΘSℓT ∗
X

is a positive semidefinite operator whenever ΘT ∗
X

is.

A.4. Curvature of the total jet bundle

The jet bundle Ek,mT
∗
X is filtered by weighted degrees, with graded pieces

Gr•Ek,mT
∗
X ≃

⊕
l1+2l2+···+klk=m

lj≥0

Sl1T ∗
X ⊗ Sl2T ∗

X ⊗ · · · ⊗ SlkT ∗
X .

The induced metric on Ek,mT
∗
X is defined as the orthogonal direct sum metric from the tensor

products of the SljT ∗
X .

The curvature tensor of Ek,mT
∗
X then decomposes additively:

ΘEk,mT ∗
X
=

k∑
j=1

j π∗j
(
Θ

SljT ∗
X

)
, (A.3)

where πj denotes projection onto the j-th factor of the graded summand.
Because Θ

SljT ∗
X

is positive whenever ΘT ∗
X

is, and the coefficients j are positive integers,

the total curvature (A.3) is again semipositive.
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A.5. Scaling in the weighted degree m

Examine the scaling behaviour with respect to m: By the weighted degree constraint l1 +
2l2 + · · ·+ klk = m, each term in (A.3) contributes proportionally to m, in the sense that:

ΘEk,mT ∗
X
= mΘEk,1T

∗
X
+O(1),

when the metric hk,m is scaled compatibly with the jet-weight filtration. Thus, the curvature
grows linearly with m at leading order.

Inserting this into the Morse integral yields:∫
X
Tr

[(
ΘEk,mT ∗

X
− Id⊗ΘA

)n
+

]
∼ mn

∫
X
Tr

[(
ΘEk,1T

∗
X
− Id⊗ΘA

)n
+

]
,

hence the mn factor in the asymptotic lower bound

h0(X,Ek,mT
∗
X ⊗A−1) ≥ Ckm

n+βk ,

where βk arises from the growth of the fiber dimension rank(Ek,mT
∗
X).

A.6. Nakano positivity criterion

Let (E, h) be a Hermitian holomorphic vector bundle with curvature tensor ΘE,h = (Θ β
ij̄α

). I

recall that (E, h) is Nakano-positive if for all nonzero ξ ∈ TX and v ∈ E,∑
i,j,α,β

Θ β
ij̄α

ξiξ̄jvαv̄β > 0.

Applying this to E = Ek,mT
∗
X ⊗A−1 gives

ΘE,h = ΘEk,mT ∗
X ,hk,m

− Id⊗ΘA,hA
.

If ΘEk,mT ∗
X
dominates Id⊗ΘA in the Nakano sense on an open set, Ek,mT

∗
X ⊗A−1 is Nakano-

positive there. This is precisely the geometric condition J+(k) used in the main theorem.

A.7. Asymptotic contribution to the Morse inequalities

Combining the scaling of curvature and the positivity condition yields:

Tr
[
(ΘEk,mT ∗

X
− Id⊗ΘA)

n
+

]
= mnΦk(x) +O(mn−1),

where Φk(x) > 0 is the local curvature density function. Integrating over X gives

h0(X,Ek,mT
∗
X ⊗A−1) ≥ mn

n!

∫
X
Φk(x) dVω + o(mn),

hence the constants

Ck =
1

n!

∫
X
Φk(x) dVω, αk = n+ βk,

appearing in the main abundance inequality.
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Appendix B. Analytic Derivation of the Holomorphic Morse
Inequalities

B.1. The Bochner–Kodaira–Nakano framework

Let (X,ω) be a compact Hermitian manifold of complex dimension n, and let (L, hL) be a
holomorphic line bundle with Hermitian metric hL = e−φ and curvature

ΘL,hL
= i∂∂̄φ.

Let (E, hE) be a holomorphic Hermitian vector bundle. For each m ∈ N, consider the Dol-
beault complex

· · · ∂̄−→ A 0,q−1(X,E ⊗ L⊗m)
∂̄−→ A 0,q(X,E ⊗ L⊗m)

∂̄−→ A 0,q+1(X,E ⊗ L⊗m)
∂̄−→ · · · .

Equip A 0,q(X,E ⊗ L⊗m) with the L2-inner product induced by hE , h
m
L , and ω.

Define the Bochner–Kodaira–Nakano Laplacian:

□m = ∂̄ ∂̄∗ + ∂̄∗ ∂̄ acting on A 0,q(X,E ⊗ L⊗m).

The ∂̄-cohomology groups satisfy the Hodge isomorphism:

Hq(X,E ⊗ L⊗m) ≃ ker(□m|(0,q)).

Thus hq(X,E ⊗ L⊗m) equals the multiplicity of the zero eigenvalue of □m on (0, q)-forms.

B.2. Spectral density asymptotics

Let {λ(m)
j,q }j≥0 denote the spectrum of □m on (0, q)-forms. Define the spectral counting func-

tion:
N (m)

q (Λ) = #{j | λ(m)
j,q ≤ Λ}.

I consider the limit Λ → 0+, since harmonic forms correspond to zero eigenvalues. The key
idea is that as m → ∞, the operator □m behaves like a semi-classical Laplacian with small
parameter ℏ = 1/

√
m.

By rescaling coordinates near a fixed point x0 ∈ X, the curvature form ΘL,hL
(x0) can be

diagonalized:

ΘL,hL
(x0) = i

n∑
j=1

λj dz
j ∧ dz̄j .

The local model operator becomes

□m,x0 =

n∑
j=1

(
− ∂2

∂zj∂z̄j
+mλj z̄

j ∂

∂z̄j
+mλj z

j ∂

∂zj
+m|λj |2|zj |2

)
+O(m1/2).

Hence, the eigenvalue distribution of □m is asymptotically determined by the sign pattern of
the eigenvalues λj of ΘL,hL

.

B.3. Local index density

Let q(x0) denote the number of negative eigenvalues of ΘL,hL
(x0). The local index density

(the pointwise trace of the Bergman kernel) is given asymptotically by

Bm,q(x0) :=
∑

λ
(m)
j,q =0

|ψ(m)
j,q (x0)|2 =

mn

πn
det

(
i

2π
ΘL,hL

(x0)

)(q)

+

+O(mn−1), (B.1)
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where (·)(q)+ denotes the contribution from the points with exactly q negative curvature direc-
tions.

Integrating over X gives:

hq(X,E ⊗ L⊗m) =

∫
X
Bm,q(x) dVω(x) ≤

mn

n!

∫
X(q)

(−1)q (ΘL,hL
)n+ + o(mn),

which is precisely the weak holomorphic Morse inequality.

B.4. The strong inequality

A refined microlocal analysis using the heat kernel expansion of exp(−t□m/m) yields the
strong Morse inequalities:

q∑
j=0

(−1)q−jhj(X,E ⊗ L⊗m) ≤ mn

n!

∫
X(≤q)

(−1)q (ΘL,hL
)n+ + o(mn), (B.2)

where X(≤ q) =

q⋃
j=0

X(j). (B.3)

In particular, for q = 0 I recover the lower bound:

h0(X,E ⊗ L⊗m) ≥ mn

n!

∫
X(0)

(ΘL,hL
)n+ + o(mn).

B.5. Application to vector bundles

Let (E, hE) be a vector bundle of rank r with curvature ΘE,hE
. Replacing ΘL,hL

by the total
curvature tensor

Θtot = ΘE,hE
+ IdE ⊗ΘL,hL

and tracing over the fiber gives:

hq(X,E ⊗ L⊗m) ≤ mn

n!

∫
X(q)

(−1)qTr
[
(Θtot)

n
+

]
+ o(mn).

If Θtot is semipositive and positive on a set of positive measure, this yields

h0(X,E ⊗ L⊗m) ≥ mn

n!

∫
X
Tr

[
(Θtot)

n
+

]
+ o(mn),

which is the full vector-bundle form of Demailly’s holomorphic Morse inequalities.

B.6. Semi-classical interpretation

The inequalities have a semi-classical meaning: consider the Schrödinger operator

Hm = −ℏ2∆+ V (x), with ℏ = 1/
√
m, V (x) = Tr(ΘL,hL

(x)).

The space of holomorphic sections corresponds to the ground states of Hm as ℏ → 0. Regions
where ΘL,hL

is positive act as potential wells supporting bound states, while negative curvature
directions suppress them. Thus the asymptotic number of holomorphic sections scales with
mn times the volume of the set where ΘL,hL

> 0.
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B.7. Extension to jet bundles

For E = Ek,mT
∗
X , the total curvature is

Θtot = ΘEk,mT ∗
X ,hk,m

− Id⊗ΘA,hA
,

and the above spectral analysis applies directly. By Nakano-positivity on a dense open set,
the integral ∫

X
Tr

[
(Θtot)

n
+

]
> 0,

yielding the quantitative lower bound

h0(X,Ek,mT
∗
X ⊗A−1) ≥ mn

n!

∫
X
Tr

[
(ΘEk,mT ∗

X
− Id⊗ΘA)

n
+

]
+ o(mn),

as used in Proposition 5.1.

B.8. Conclusion

The analytic proof of the holomorphic Morse inequalities thus rests on:

1) spectral asymptotics of the Laplacian □m under large tensor powers of L;

2) local normal form of ΘL,hL
and diagonalization of its curvature matrix;

3) semi-classical rescaling and stationary phase expansion of the heat kernel;

4) integration over the curvature-sign decomposition of X.

This spectral derivation provides the analytic foundation linking curvature positivity to asymp-
totic abundance of sections, completing the analytic backbone of the proof scheme for the
Green–Griffiths–Lang conjecture.
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